为什么Keras Tensorboard标量图不是线性的(循环)?

我正在通过Keras使用TensorBoard。但是标量图是混乱的。就像不是线性的,循环回到它自己。有什么办法可以纠正这个问题吗?

?

?

class LRTensorBoard(TensorBoard):
    def __init__(self, log_dir):
        super().__init__(log_dir=log_dir)
    def on_epoch_end(self, epoch, logs=None):
        logs.update({'lr': K.eval(self.model.optimizer.lr)})
        super().on_epoch_end(epoch, logs)

model = Sequential()
model.add(GRU(16, input_shape=(TimeStep.TIME_STEP + 1, TimeStep.FEATURES), activation='relu', return_sequences=True))
model.add(GRU(16, activation='relu', return_sequences=True))
model.add(GRU(16, activation='relu'))
model.add(Dense(3, activation='softmax'))

tensorboard = TensorBoard(log_dir=logDir, histogram_freq=0, write_graph=True)
tensorboard.set_model(model)

model.compile(loss='categorical_crossentropy', optimizer=optimize, metrics=[categorical_accuracy])
history = model.fit(TimeStep.fodder, TimeStep.target, epochs=100, shuffle=True, batch_size=4064, validation_split=0.3, callbacks=[tensorboard, LRTensorBoard(log_dir=logDir)])

转载请注明出处:http://www.tochigihk.com/article/20230526/2096012.html